

Electronic Structure: Basic Theory and Practical Methods,
 Richard M. Martin, Cambridge University Press, 2004.

Errata

(May, 2005 -- only important errata listed - not minor typos)
xxi Notation: $u_{\alpha \beta}$ denotes a strain tensor (not a stress tensor)
2: line 6-1991 should be 1911
64: Eq. (3.48) - The large square brackets should be omitted.
70: Eq. (3.64) - indices n and i should be replaced by m as shown in the equation at the right:

$$
\begin{equation*}
\sum_{j=0}^{m}\left\langle\psi^{(j)} \mid \psi^{(m-j)}\right\rangle=0, m \neq 0 . \tag{3.64}
\end{equation*}
$$

70: line after (3.64) should read:
where we have collected all terms of order λ^{m} and then set $\lambda=1$.
72: Exercise 3.19 is incorrect as stated. The second sentence should read:
Show that such an empty orbital does not experience a self contribution to the exchange energy, whereas for a filled state there is an attractive self term in the exchange.
75: Caption of Fig. $2-60^{\circ}$ should be replaced by 90° in two places.
83: Eq. (4.14) - for fcc, \mathbf{b}_{3} should be $(-1,1,1)$.
84: Eqs. (4.16) and (4.17) contain spurious "|;". These should be omitted.
97: Exercise 4.3 - " 60 degrees" should be replaced by " 90 degrees".
117: Exercise 5.14 - The hint should be replaced by:
(Hint: Assume the change in the density due to the impurity is $\delta \mathrm{n}(\mathrm{r})=\exp \left(-\mathrm{k}_{\mathrm{TF}} \mathrm{r}\right) / \mathrm{r}$, and determine the decay constant k_{TF} from the TF equations expanded to linear order in $\delta \mathrm{n}(\mathrm{r})$.)
127: Eqs. (6.20) - (6.22) - corrections as shown to the right:
137: Eq. (7.3) - the last term should be integrated over all space.

$$
\begin{align*}
& \Omega[\hat{\rho}]=\operatorname{Tr} \hat{\rho}\left[(\hat{H}-\mu \hat{N})+\frac{1}{\beta} \ln \hat{\rho}\right] \tag{6.20}\\
& \Omega=\Omega\left[\hat{\rho}_{0}\right]=-\frac{1}{\beta} \ln \operatorname{Tr} \mathrm{e}^{-\beta(\hat{H}-\mu \hat{N})} \\
& \hat{\rho}_{0}=\frac{\mathrm{e}^{-\beta(\hat{H}-\mu \hat{N})}}{\operatorname{Tr} \mathrm{e}^{-\beta(\hat{H}-\mu \hat{N})}}
\end{align*}
$$

157: line before (8.11) $-n^{-1 / 3}$ should be $n^{1 / 3}$
189: Eq. (10.10) - in the last term r^{2} should be r^{-2}
201: line above Eq. (10.40) $-\psi^{2}$ should be ψ^{1}
252: line 2 - Mathieu (instead of Matthew)
252: line 4 - Exercise 12.4 (instead of 12.7).
261: bottom - [567] (instead of [560])
287: Eqs. (14.15) and (14.16) - The x and y components should be interchanged to agree with the cell oriented as in Fig. 4.5 and 14.9a.
Two lines below (14.16) - the K point should be $\left(k_{x}=(2 / 3)(2 \pi / a), k_{y}=0\right)$.
296: Exercise 14.19 - The K point should be $\left(k_{x}=(2 / 3)(2 \pi / a), k_{y}=0\right)$.
472: last sentence of section 23.7 - The reference should be to Haynes and Payne [859] see errata for the references.
479-80: Eqs. (B.4) and (B.5) should be omitted; they repeat (B.2) and (B.3) and contain small errors.
In Eq. (B.6) the letters " m " and " M " are spurious and should be omitted. In the first line of (B.6) $n\left(r_{s}\right)$ should be $\ln \left(\mathrm{r}_{\mathrm{s}}\right)$ in both places. Note that only selected forms for the unpolarized case are given; complete expressions can be found in [224,368,413].
503: Eq. (F.7) - Replace by $\gamma_{E}=-\alpha(\mathrm{Ze})^{2} /(2 R)$, where $2 R=d$, the nearest neighbor distance for ionic crystals (top line of Tab. F.1), and $\mathrm{R}=\mathrm{R}_{\mathrm{Ws}}$, the Wigner Seitz radius for elemental crystals (bottom line of Tab. F.1).
504: Replace the lines after Eq. (F.9) by:
which is very close to the Madelung energies for the close-packed metal in Tab. F.1.
575: The speed of light in atomic units is $137.036,000$ (instead of $137,036,000$)
References: [859] P. D. Haynes and M. C. Payne, "Localised spherical-wave basis set for O(N) total-energy pseudopotential calculations", Comput. Phys. Commun. 102, pages 17-27 (1997).

Back Cover: last sentence - Recently he has been associate editor for condensed matter theory for the Reviews of Modern Physics condensed matter theory. (Peter Littlewood is now associate editor for condensed matter theory.)

